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Abstract 

 "Drivers" are theorized mechanisms for persistent 
atrial fibrillation. Machine learning algorithms have been 
used to identify drivers, but the small size of current driver 
datasets limits their performance. We hypothesized that 
pretraining with unsupervised learning on a large dataset 
of unlabeled electrograms would improve classifier 
accuracy on a smaller driver dataset. In this study, we used 
a SimCLR-based framework to pretrain a residual neural 
network on a dataset of 113K unlabeled 64-electrode 
measurements and found weighted testing accuracy to 
improve over a non-pretrained network (78.6±3.9% vs 
71.9±3.3%). This lays ground for development of superior 
driver detection algorithms and supports use of transfer 
learning for other datasets of endocardial electrograms. 

 
 

1. Introduction 

Atrial fibrillation (AF) is the most common electrical 
disease of the heart, affecting over 50 million patients 
world-wide [1]. Pulmonary vein isolation, where the 
pulmonary veins are isolated from the left atrium substrate 
via ablation, is a standard treatment for AF, but is still 
associated with high recurrence with persistent atrial 
fibrillation (persAF) [2]. Non-pulmonary vein mechanisms 
in the form of focal ectopies and reentrant rotors, termed 
"drivers", have been proposed as reason for this recurrence 
[3]. As such, the automated identification of drivers in 
auxiliary treatments for persAF has developed recent 
interest. Machine learning algorithms, in particular, have 
seen recent success in driver identification and several 
algorithms are now available for this task with inputs from 
endocardial mapping, optical mapping, and ECGI [4]–[6].  

However, despite broad utilization in machine learning 
literature, transfer learning remains unexplored as a means 
of improving the accuracies of driver detection algorithms. 
In transfer learning, a model is trained on a precursory task 

to establish a set of initialized parameters [7]. This 
pretraining can improve accuracy and reduce training time 
when the network is trained on a subsequent task. Many 
pretraining tasks are available for either labelled or 
unlabelled data, including denoising, image inpainting, and 
classification of readily available markers (e.g., age or 
sex).  

Our laboratory has built an extensive dataset of 
endocardial voltage measurements with ultra-high density 
mapping catheters in a canine model. In this paper, we 
evaluate the hypothesis that contrastive pretraining will 
improve the accuracy of a deep learning model in 
identifying driving mechanisms from endocardial 
electrograms. Successful improvement in driver detection 
accuracy would be impetus for broader application or 
pretraining in driver detection as well as for non-driver 
related tasks. 

 
2. Methods 

For all studies, we adhered to the Guide for the Care and 
Use of Laboratory Animals. The Institutional Animal Care 
and Use Committee at the University of Utah approved the 
protocol.  

Mapping Studies and Classification of Driving Sites. 
A paced canine model of persAF was used as described 
previously (10 female, 3 male, mongrel purpose-bred 
hound, 27-35 kg, 1-2 yrs.) [8]. In brief, we performed 
electrophysiological studies on the canines at 1, 3, and 6 
months during periods of sustained, non-paced AF. In 
these studies, we captured endocardial electrograms with 
the Rhythmia mapping system and 64-electrode Orion 
basket catheter (Boston Scientific) at a sampling frequency 
of 954 Hz. For each study performed, we manually 
interrogated a subset of the highest frequency atrial AF 
electrograms at each major anatomical site to find 
rotational and focal mechanisms. 

Network Design. We split the 64-electrode 
electrograms from all studies into samples of 2 seconds 
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each. We then transformed these electrograms into stacked 
images of 8×8 with 1907 channels encoding the time 
dimension. We used an 18-layer 3D ResNet as the base 
network for our model into which these electrograms could 
be fed.  

Contrastive Learning. We pretrained our neural 
network with the SimCLR contrastive learning process [9]. 
In brief, we remove the final linear layer of the 3D ResNet 
and replace that layer with a linear layer feeding into a 
multilayer perceptron termed the projection head. This 
projection head utilized 1000x1000 interlayer linear 
multiplications, a single hidden layer, a ReLU function 
after the input layer, and 128 output features. Then, we 
train this altered network to encode images derived from 
the same original images (e.g., two crops of a base image, 
or a blurred image and its unblurred original) to the same 
latent space. Likewise, images derived from different 
original images are encoded to distant locations in the 
latent space. Key to this task are the random augmentations 
used: these augmentations are used to transform given 
original images into daughter images to be compared to 
one another. Augmentations are also chosen such that 
semantic meaning is retained after transformation, akin to 
rotations of the same image. This results in each image 
becoming a class unto themselves. 

We used NT-Xent loss, a LARS optimizer with learning 
rate of 4.8, weight decay of 10-6, and batch size of 4096. 
We trained for 200 epochs with a linear warmup for the 
first 10 epochs followed by a cosine decay schedule 
without restarts, terminating training upon plateau in loss 
reduction. For our augmentations, having need to account 
for differences in shape and structure between 2D images 
and our 3D catheter electrograms, we used random 
cropping, random differentiation in the time dimension, 
and random blurring as our augmentation processes. 
Differentiation and blurring were performed with 50% 
chances of occurrence. For cropping, we reduced image 
area by up to 75% with random aspect ratios ±25% of 
original. These crops were stretched and bilinearly 
interpolated to original image size. These transformations 
were performed to create pairs of augmented EGMs from 
a single original EGM in the contrastive process. 

Classifier Training. After contrastive pretraining, we 
began fine-tuning our network on the classification task. 
Here, we detach the projection head and replace it with a 
linear layer with a binary output as seen in Figure 1. We 
utilized a 70-10-20 training-validation-testing split, 
performing hyperparameter sweeps with the training 
dataset and evaluating performance on the validation 
dataset. After completion of sweeping with both pretrained 
and non-pretraining networks, we identified networks with 
the lowest validation loss and evaluated their performance 
on the testing dataset.  

 

 
 
Figure 1. Diagram of model training paradigm. The deep 
neural network is first trained on the SimCLR task with the 
unlabeled dataset of AF electrograms. After completion of 
the pretraining task, the projection head is detached and 
replaced with a single linear layer leading to the binary 
output. The network is then trained on the driver 
classification process with the labeled electrogram dataset. 
 

Interpretability Analysis. Interpretation analysis is 
rapidly becoming an essential prerequisite to clinical 
acceptance of deep neural networks due to the opaque 
rationale underlying network performance. As such, we 
used Grad-CAM visualizations of our model gradients and 
activations to inspect model decision making in testing 
results [10]. We used the 4th layer of the 3D ResNet for 
this visualization. In brief, Grad-CAM computes the 
elementwise changes in classification confidence via 
multiplication of the gradient and activations of an input 
image. These changes can be projected over the original 
image to highlight which regions were responsible for the 
greatest contributions to final class decision by the 
network. 

Statistics. We used weighted accuracy for our 
classification to eliminate any effects of class imbalance. 
To compare performance between pretrained and non-
pretrained networks, we bootstrapped the testing dataset to 
acquire distributions of testing accuracy. We compared 
these distributions with paired t-tests.  

 
3. Results 

In total, we obtained 113,572 64-electrode electrograms 
of 2-seconds each. From this, we examined 502 
electrograms and classified them as contained a driver or 
not a driver. From our 502 samples used for driver 
identification, we manually found 272 non-drivers, 172 
rotors, and 57 focal ectopies. Specific times where drivers 
began and terminated were noted. The remaining, 
unlabelled electrograms were used in the contrastive 
pretraining process. We reached a minimum in contrastive 
loss at 4e-4 after 184 epochs.  

Classification. We obtained testing accuracies of 
71.9 ± 3.9% and 78.6 ± 3.3% with the non-pretrained and 
pretrained networks respectively. To determine accuracy 
variance, we bootstrapped the testing dataset 10,000 times 
with replacement. Our final classification training routine 
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used a batch size of 250, 40 epochs, a learning rate of 5e-
5, and the Adam optimizer.  
 
Table 1. Training, validation, and testing results of the 
pretrained and non-pretrained network. 
 

Network Dataset Loss Weighted 
Accuracy  F1 

Non-
Pretrained 

Training 0.0023 100.0% 1.00 
Validation 0.58 79.2% 0.79 
Testing 0.70 71.9% 0.68 

Pretrained 
Training 0.24 93.8% 0.93 
Validation 0.39 78.5% 0.78 
Testing 0.50 78.6% 0.75 

 
Interpretability Analysis. With our final pretrained 

classification network, examined all correctly labelled 
driver images with Grad-CAM. We examined several 
input images from the testing dataset. Fig. 3 shows 
examples of these images with regions more important to 
the network classification highlighted. We generally 
observed highlighted regions to fall between the red lines 
where drivers were manually demarcated. 
 
4. Discussion 

We successfully demonstrated improvement in driver 
detection accuracy after contrastive pretraining of our 
neural network. This performance increase is not directly 
related to the electrical features of drivers, but rather to the 
network learning superior feature space representations of 
electrograms which are more amenable than raw 
electrograms for subsequent classification tasks. This 
amenability is derived from these representations 
possessing invariance to the augmentations used in the 
contrastive task – augmentations similar to common noise 
patterns and data restrictions (such as incomplete electrode 
contact) in endocardial data.  

To our knowledge, our unlabeled endocardial 
electrogram dataset is the largest in AF deep learning 
literature. However, augmentation methods remain 
available which could have increased the effective size of 
our driver dataset. While our unlabeled dataset was 
sufficient for our pretraining task to improve our final 
classification, we did not explore data augmentation as a 
means of increasing the size of the labeled dataset. Such 
augmentations could improve network outcomes and 
should be investigated. 

In this work, we utilized minimally preprocessed 
electrograms as input to our networks, using only QRS-
subtraction and filtration of powerline noise. This allows 
for faster determination of drivers, reducing patient 
procedure time. Additionally, networks may be able to 
identify undiscovered markers of drivers in raw 

electrograms, and as such unnecessary removal of raw 
signal may degrade network performance. Our QRS-
subtraction and powerline-filtration may have undermined 
network performance; future studies may evaluate whether 
these adjustments had a deleterious impact.  

Other machine learning algorithms in literature have 
achieved driver classification accuracies of up to 95%, 
exceeding our network performance [4], [6], [11]. We 
attribute this to differences in electrogram capture 
modality and use of phase maps rather than minimally 
processed electrograms. When limited to deep neural 
networks trained on high-density endocardial mapping 
datasets, we find comparable accuracies (~80%) [11]. 
Additionally, heterogeneity in dataset “difficulty” remains 
unexplored, preventing direct comparison of our results to 
others. Our innovation is in the introduction of pretraining 
to driver classification, where we show improvement in 
driver detection accuracy after pretraining. When 
combined with other advances in network design, data 
collection, and training routines, pretraining may lead deep 
learning algorithms to achieve results equal or superior to 
manual identification. 

 

 
Figure 3. Example electrograms with drivers after Grad-
CAM analysis. Regions more important to network 
identification are highlighted in yellow, and regions where 
drivers have been manually marked are indicated between 
the red lines. 

 
We note synergy between the use of a basket catheter 

and 3D convolutional neural networks. Networks with 3D 
layers are able to preserve more spatial information than 
2D and 1D networks via use of kernels which respect 
adjacencies of electrodes. When used with a basket-style 
catheter, these adjacencies are consistently respected 
across measurements. Deforming catheters would not have 
such consistent adjacencies and would need alternate 
design to incorporate spatial conformation of electrodes. 
Drivers are identified by sequences of endocardial 
activations with spatial relationships, making this an 
important network design constraint. 

Network Interpretability. When Grad-CAM was 
applied to our final pretrained network, we observed that 
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many of the regions with greatest network attention 
regarding identifying drivers correctly were located within 
manually annotated times of driver occurrence. This 
concurrence between automated and manual attention is 
promising as to the underlying rationale utilized by the 
network.  

Given the high functional capacity of the networks used, 
overfitting to spurious or unconsidered correlates of 
drivers is possible. The use of a testing dataset with entirely 
separate data from training data was intended to reduce this 
effect. With respect to Grad-CAM, attention on areas of 
electrograms not classified as drivers would be strong 
evidence of overfitting and non-sensible network rationale. 
This was not observed, and instead we see network 
attention was significantly greater at times where 
electrograms were actively exhibiting driver behaviour. 
This gives especial merit to the supposition that the 
network was learning features of drivers rather than noise 
or extraneous correlates.   

 
5. Conclusions 

We confirmed our hypothesis, showing driver detection 
accuracy of our neural network to increase after 
pretraining.  Additionally, this pretraining process is non-
specific to driver detection and can be explored as 
parameter initialization for other tasks. 

 
6.  Limitations 

We used a paced canine model of AF as source for our 
datasets, potentially limiting the generalizability of our 
results to clinical electrophysiology.  
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